Improved Minimax Predictive Densities under Kullback – Leibler Loss
نویسندگان
چکیده
Let X|μ∼Np(μ,vxI ) and Y |μ∼Np(μ,vyI ) be independent p-dimensional multivariate normal vectors with common unknown mean μ. Based on only observing X = x, we consider the problem of obtaining a predictive density p̂(y|x) for Y that is close to p(y|μ) as measured by expected Kullback–Leibler loss. A natural procedure for this problem is the (formal) Bayes predictive density p̂U(y|x) under the uniform prior πU(μ)≡ 1, which is best invariant and minimax. We show that any Bayes predictive density will be minimax if it is obtained by a prior yielding a marginal that is superharmonic or whose square root is superharmonic. This yields wide classes of minimax procedures that dominate p̂U(y|x), including Bayes predictive densities under superharmonic priors. Fundamental similarities and differences with the parallel theory of estimating a multivariate normal mean under quadratic loss are described.
منابع مشابه
Improved Minimax Prediction Under Kullback-Leibler Loss
Let X | μ ∼ Np(μ, vxI) and Y | μ ∼ Np(μ, vyI) be independent p-dimensional multivariate normal vectors with common unknown mean μ, and let p(x|μ) and p(y |μ) denote the conditional densities of X and Y . Based on only observing X = x, we consider the problem of obtaining a predictive distribution p̂(y |x) for Y that is close to p(y |μ) as measured by Kullback-Leibler loss. The natural straw man ...
متن کامل2 01 2 on the within - Family Kullback - Leibler Risk in Gaussian Predictive Models
We consider estimating the predictive density under KullbackLeibler loss in a high-dimensional Gaussian model. Decision theoretic properties of the within-family prediction error – the minimal risk among estimates in the class G of all Gaussian densities are discussed. We show that in sparse models, the class G is minimax suboptimal. We produce asymptotically sharp upper and lower bounds on the...
متن کاملComparison of Kullback-Leibler, Hellinger and LINEX with Quadratic Loss Function in Bayesian Dynamic Linear Models: Forecasting of Real Price of Oil
In this paper we intend to examine the application of Kullback-Leibler, Hellinger and LINEX loss function in Dynamic Linear Model using the real price of oil for 106 years of data from 1913 to 2018 concerning the asymmetric problem in filtering and forecasting. We use DLM form of the basic Hoteling Model under Quadratic loss function, Kullback-Leibler, Hellinger and LINEX trying to address the ...
متن کاملExact Minimax Predictive Density Estimation and MDL
The problems of predictive density estimation with Kullback-Leibler loss, optimal universal data compression for MDL model selection, and the choice of priors for Bayes factors in model selection are interrelated. Research in recent years has identified procedures which are minimax for risk in predictive density estimation and for redundancy in universal data compression. Here, after reviewing ...
متن کاملMinimax rate adaptive estimation over continuous hyper-parameters
|We study minimax-rate adaptive estimation for density classes indexed by continuous hyper-parameters. The classes are assumed to be partially ordered in terms of inclusion relationship. Under a mild condition on the minimax risks, we show that a minimax-rate adaptive estimator can be constructed for the classes. 1 Problem of interest This paper concerns adaptive density estimation. Information...
متن کامل